Properties and regimes of vertisols with gilgai microtopography (a review)

Abstract

Data on the morphology and spatial distribution of slickensides and cracks, particle-size distribution, the organic carbon content, the content and forms of carbonate concentrations, and physical and physicochemical properties of Vertisols with the gilgai microtopography are systematized. Relatively scarce information on the functioning regimes of gilgai soil complexes (their temperature and moisture conditions, redox potential, vertical and horizontal deformations, and soil density changes) is discussed. Common properties of gilgai soils are the clayey texture of their profiles and the high portion of smectitic minerals specifying the high shrink–swell capacity of the soil material. The most important specificity of soils with the gilgai microtopography is a significant horizontal differentiation of the soil profiles with alternation of bowl-shaped morphostructures with a thick dark layer without carbonates in microlows and diapiric morphostructures composed of the rising material of the lower layers with diverse carbonate concentrations on microhighs. Data on the spatial distribution of soil properties within the gilgai microcatenas can be applied in the studies of the genesis and evolution stages of the gilgai soil complexes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. L. Bystritskaya and A. N. Tyuryukanov, Black Vertic Soils of Eurasia (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  2. 2.

    M. I. Gerasimova, I. I. Lebedeva, and N. B. Khitrov, “Indexation of soil horizons: present status, problems, and solutions,” Pochvovedenie, No. 5, 627–638 (2013).

    Google Scholar 

  3. 3.

    Classification and Diagnostics of Soils of Russia (Oikumena, Smolensk, 2004) [in Russian].

  4. 4.

    I. V. Kovda, A. M. Ermolaev, A. A. Gol’eva, and E. G. Morgun, “Reconstruction of landscape with Vertisols using the results of botanic biomorphic analysis,” Izv. Ross. Akad. Nauk, Ser.: Biol., No. 3, 367–377 (1999).

    Google Scholar 

  5. 5.

    I. V. Kovda, E. G. Morgun, and T. V. Alekseeva, “Formation and development of the gilgai soil cover (by the example of Central Cis-Caucasus),” Pochvovedenie, No. 3, 19–34 (1992).

    Google Scholar 

  6. 6.

    I. V. Kovda, E. G. Morgun, and Ya. G. Ryskov, “Structural and functional analysis of soil microcomplex of gilgais: morphological features and moisture dynamics,” Pochvovedenie, No. 11, 1326–1339 (1995).

    Google Scholar 

  7. 7.

    F. I. Kozlovskii and E. A. Kornblyum, Meliorative Problems of the Development of Floodplains in the Steppe Zone (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  8. 8.

    I. A. Krupenikov, B. P. Podymov, E. E. Skryabina, V. E. Alekseev, and M. I. Smirnov, Vertic Soils of Moldova: Genesis, Properties, Evolution, and Use (Shtiintsa, Chisinau, 1990) [in Russian].

    Google Scholar 

  9. 9.

    Z. A. Makeev, Engineering and Geological characteristics of Maikop Clays (Southern Part of Volgograd Oblast and Central Cis-Caucasus) (Academy of Science of the Soviet Union, Moscow, 1963) [in Russian].

    Google Scholar 

  10. 10.

    A. M. Monyushko, Engineering and Geological Assessment of Sarmat Clays (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  11. 11.

    E. Ortega, F. J. Lozano, S. Montoya, and C. Asensio, “Effects on soil properties of vertic movements in Calcisols from southern Spain,” Eurasian Soil Sci. 47 (10), 1005–1014 (2014).

    Article  Google Scholar 

  12. 12.

    Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Institute, Moscow, 2008) [in Russian].

  13. 13.

    Vertisols and Vertic Soils, Ed. by E. M. Samoilova (Moscow State University, Moscow, 1990) [in Russian].

  14. 14.

    P. L. Smol’yanikov and V. D. Parovoi, “Influence of moisture and structure failure on the physical and mechanical properties of differently textured soils,” in Problems of Soil Melioration in Moldavia (Shtiintsa, Chisinau, 1990), pp. 105–110.

    Google Scholar 

  15. 15.

    N. B. Khitrov, “Vertical deformations of chernozemic Vertisols,” Pochvovedenie, No. 6, 645–657 (1998).

    Google Scholar 

  16. 16.

    N. B. Khitrov, “Vertisols with gilgai microtopography: classification and parameters of microtopography and morphological types of soils (a review),” Eurasian Soil Sci. 49 (2), 125–144 (2016).

    Article  Google Scholar 

  17. 17.

    N. B. Khitrov, “Horizontal deformations of chernozemic Vertisols in Stavropol region,” Pochvovedenie, No. 8, 910–920 (1998).

    Google Scholar 

  18. 18.

    N. B. Khitrov, Genesis, Diagnostics, Properties, and Functions of Clay Swelling Soils in the Central Cis-Caucasus (Dokuchaev Soil Science Institutes, Moscow, 2003) [in Russian].

    Google Scholar 

  19. 19.

    N. B. Khitrov, “Vertigenesis in soils of the central chernozemic region of Russia,” Eurasian Soil Sci. 45 (9), 834–842 (2012).

    Article  Google Scholar 

  20. 20.

    N. B. Khitrov, V. P. Vlasenko, and L. V. Rogovneva, “Statistical parameters of the bowl-shaped and diapiric morphostructures of Vertisols in the Vorontsovskaya depression,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 77, 3–28 (2015).

    Google Scholar 

  21. 21.

    N. B. Khitrov, V. P. Vlasenko, D. I. Rukhovich, A. V. Bryzzhev, N. V. Kalinina, and L. V. Rogovneva, “The geography of Vertisols and vertic soils in the Kuban–Azov Lowland,” Eurasian Soil Sci. 48 (7), 671–678 (2015).

    Article  Google Scholar 

  22. 22.

    N. B. Khitrov, T. V. Korolyuk, T. V. Tursina, N. P. Chizhikova, G. A. Shershukova, I. A. Beleneva, and D. R. Morozov, “Compact soils of territories with gilgai microtopography” Eurasian Soil Sci. 27 (5), 1–18 (1995).

    Google Scholar 

  23. 23.

    N. B. Khitrov and L. V. Rogovneva, “Vertisols and vertic soils of the Middle and Lower Volga regions,” Eurasian Soil Sci. 47 (12), 1167–1186 (2014).

    Article  Google Scholar 

  24. 24.

    N. B. Khitrov and N. P. Chizhikova, “Mineralogical composition of Vertisols in Stavropol region,” Pochvovedenie, No. 8, 987–1002 (1995).

    Google Scholar 

  25. 25.

    N. B. Khitrov and N. P. Chizhikova, “Role of clay minerals in vertigenesis of soils in Stavropol region,” Pochvovedenie, No. 11, 1408–1418 (1995).

    Google Scholar 

  26. 26.

    G. D. Aitchison, “The mechanics of gilgai formation,” in Proceedings of the Australian Conference in Soil Science, Adelaide, June 1953 (Waite Agricultural Research Institute, Adelaide, 1953), No. 6.25, pp. 1–3 (1953).

    Google Scholar 

  27. 27.

    N. Ahmad, “Vertisols,” in The Soil Orders, Vol. 2: Hall Pedogenesis and Soil Taxonomy, Ed. by L. P. Wilding, N. E. Smeck, and G. F. Hall (Elsevier, Amsterdam, 1983), Chap. 3, pp. 91–123.

    Google Scholar 

  28. 28.

    N. Ahmad, “Occurrence and distribution of Vertisols,” in Vertisols and Technologies for Their Management. Developments in Soil Science, Ed. by N. Ahmad and A. Mermut (Elsevier, Amsterdam, 1996), Vol. 24, Chap. 1, pp. 1–41.

    Google Scholar 

  29. 29.

    N. Ahmad, “Management of Vertisols in rainfed conditions,” in Vertisols and Technologies for Their Management. Developments in Soil Science, Ed. by N. Ahmad and A. Mermut (Elsevier, Amsterdam, 1996), Vol. 24, Chap. 10, pp. 363–428.

    Google Scholar 

  30. 30.

    Vertisols and Technologies for Their Management. Developments in Soil Science, Ed. by N. Ahmad and A. Mermut (Elsevier, Amsterdam, 1996), Vol. 24.

  31. 31.

    N. Ahmad and W. A. Muirhead, “Management of Vertisols for rice production,” in Vertisols and Technologies for Their Management. Developments in Soil Science, Ed. by N. Ahmad and A. Mermut (Elsevier, Amsterdam, 1996), Vol. 24, Chap. 12, pp. 457–478.

    Google Scholar 

  32. 32.

    G. Blackburn, J. R. Sleeman, and H. W. Scharpenseel, “Radiocarbon measurements and soil micromorphology as guides to the formation of gilgai at Kaniva, Victoria,” Austral. J. Soil Res. 19, 1–15 (1979).

    Article  Google Scholar 

  33. 33.

    J. Bouma and J. Loveday, “Characterizing soil water regimes in swelling clay soils,” in Vertisols: Their Distribution, Properties, Classification, and Management, Ed. by L. P. Wilding and R. Puentes (Texas A&M University, College Station, TX, 1988), pp. 83–96.

    Google Scholar 

  34. 34.

    D. O. Breecker, J. Yoon, L. A. Michel, T. M. Dinka, S. G. Driese, J. S. Mintz, L. C. Nordt, K. D. Romanak, and C. L. S. Morgan, “CO2 concentrations in Vertisols: seasonal variability and shrink-swell,” SEPM Spec. Publ., No. 104, pp. 35–45 (2013).

    Google Scholar 

  35. 35.

    The Canadian System of Soil Classification (NRC Research Press, Ottawa, 1998).

  36. 36.

    Chinese Soil Taxonomy, Ed. by F. Li (Science Press, Beijing, 2001).

  37. 37.

    C. E. Coulombe, J. B. Dixon, and L. P. Wilding, “Mineralogy and chemistry of Vertisols,” in Vertisols and Technologies for Their Management. Developments in Soil Science, Ed. by N. Ahmad and A. Mermut (Elsevier, Amsterdam, 1996), Vol. 24, Chap. 5, pp. 115–200.

    Google Scholar 

  38. 38.

    C. E. Coulombe, L. P. Wilding, and J. B. Dixon, “Overview of Vertisols: characteristics and impacts on society,” Adv. Agron. 57, 289–375 (1996).

    Article  Google Scholar 

  39. 39.

    B. Debele, “The Vertisols of Ethiopia: their properties, classification and management,” in Fifth Meeting of the Eastern African Sub-Committee for Soil Correlation and Land Evaluation, Wad Medani, Sudan, World Soil Resources Report No. 56 (Food and Agriculture Organization, Rome, 1985), pp. 31–54.

    Google Scholar 

  40. 40.

    J. B. Dixon, “Mineralogy of Vertisols,” in The 12th International Congress of Soil Science “Vertisols and Rice Soils of the Tropics,” Abstracts of Papers (New Delhi, India, 1982), pp. 48–60.

    Google Scholar 

  41. 41.

    S. G. Driese, C. I. Mora, C. A. Stiles, R. M. Joeckel, and L. C. Nordt, “Mass-balance reconstruction of a modern Vertisols: implications for interpreting the geochemistry and burial alteration of paleo-Vertisols,” Geoderma 95, 179–204 (2000).

    Article  Google Scholar 

  42. 42.

    S. G. Driese, J. R. Jacobs, and L. C. Nordt, “Comparison of modern and ancient Vertisols developed of limestone in terms of their geochemistry and parent material,” Sediment. Geol. 157, 49–69 (2003).

    Article  Google Scholar 

  43. 43.

    R. Dudal, Dark Clay Soils of Tropical and Subtropical Regions (Food and Agriculture Organization, Rome, 1965).

    Google Scholar 

  44. 44.

    R. Dudal and H. Eswaran, “Distribution, properties, and classification of Vertisols,” in Vertisols: Their Distribution, Properties, Classification, and Management, Ed. by L. P. Wilding and R. Puentes (Texas A&M University, College Station, TX, 1988), pp. 1–22.

    Google Scholar 

  45. 45.

    M. Dumon, A. R. Tolossa, B. Capon, C. Detavernier, and E. van Ranst, “Quantitative clay mineralogy of a vertic Planosol in southwestern Ethiopia: impact on soil formation hypotheses,” Geoderma 214–215, 184–196 (2014).

    Article  Google Scholar 

  46. 46.

    C. H. Edelman and R. Brinkman, “Physiography of gilgai soils,” Soil Sci. 94 (6), 366–370 (1962).

    Article  Google Scholar 

  47. 47.

    H. Eswaran, F. H. Beinroth, P. F. Reich, and L. A. Quandt, The Guy D. Smith Memorial Slide Collection. Vertisols: Their Properties, Classification, Distribution, and Management (U.S. Department of Agriculture, U.S. Soil Conservation Service, Washington, DC, 1999).

    Google Scholar 

  48. 48.

    D. G. Fredlund, “Geotechnical problems associated with swelling clays,” in Vertisols and Technologies for Their Management. Developments in Soil Science, Ed. by N. Ahmad and A. Mermut (Elsevier, Amsterdam, 1996), Vol. 24, Chap. 14, pp. 499–524.

    Google Scholar 

  49. 49.

    T. C. Gustavson, Microrelief (Gilgai) Structures on Expansive Clays in the Texas Coastal Plain–Their Recognition and Significance in Engineering Construction, Geol. Circ. 75-7 (University of Texas at Austin, Bureau of economic geology, Austin, 1975).

    Google Scholar 

  50. 50.

    E. G. Hallsworth, G. K. Robertson, and F. R. Gibbons, “Studies in pedogenesis in New South Wales. VII. The “gilgai” soils,” J. Soil Sci. 6 (1), 1–31 (1955).

    Article  Google Scholar 

  51. 51.

    E. G. Hallsworth and G. G. Beckmann, “Gilgai in the Quaternary,” Soil Sci. 107 (6), 409–420 (1969).

    Article  Google Scholar 

  52. 52.

    A. Heidari, Sh. Mahmoodi, M. H. Roozitalab, and A. R. Mermut, “Diversity of clay minerals in the Vertisols of three different climatic regions in Western Iran,” J. Agric. Sci. Technol. 10, 269–284 (2008).

    Google Scholar 

  53. 53.

    IUSS Working Group WRB, World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports (Food and Agriculture Organization, Rome, 2014), No. 106.

  54. 54.

    R. F. Isbell, Soils and Vegetation of the Brig Low Lands, Eastern Australia, Soil Land Use Ser. No. 43 (Commonwealth Scientific and Industrial Research Organization, Division of Soils, Melbourne, 1962).

    Google Scholar 

  55. 55.

    R. F. Isbell, The Australian Soil Classification, Austral. Soil Land Surv. Handb. Ser. 4 (Commonwealth Scientific and Industrial Research Organization, Melbourne, 2008).

    Google Scholar 

  56. 56.

    E. Jones, P. Nyamudeza, and T. Busangavanye, “Rainfed cropping and water conservation and concentration on Vertisols in the south-east low veldt of Zimbabwe,” in Vertisol Management in Africa, Int. Board Soil Res. Manage. Proc. No. 9 (International Board for Soil Research and Management, Bangkok, Thailand, 1989), pp. 133–142.

    Google Scholar 

  57. 57.

    Proceedings of a Conference Held at ILCA “Management of Vertisols in Sub-Saharan Africa,” Addis Ababa, Ethiopia, August 31–September 4, 1987, Ed. by S. C. Jutzi, I. Haque, J. McIntire, and J. E. S. Stares (International Livestock Centre for Africa, Addis Ababa, 1988).

  58. 58.

    R. K. Katti, R. K. Lal, S. K. Fotedar, and S. K. Kulkarni, “Depth effect in expansive clays,” in Proceedings of the 2nd International Research and Engineering Conference on Expansive Clay Soil (Texas A&M University Press, College Station, TX, 1969), pp. 362–373.

    Google Scholar 

  59. 59.

    A. S. Kishné, C. L. S. Morgan, and W. L. Miller, “Vertisol crack extent associated with gilgai and soil moisture in the Texas Gulf coast prairie,” Soil Sci. Soc. Am. J. 73, 1221–1230 (2009).

    Article  Google Scholar 

  60. 60.

    A. S. Kishné, C. L. S. Morgan, Y. Ge, and W. L. Miller, “Antecedent soil moisture affecting surface cracking of a Vertisol in field conditions,” Geoderma 157, 109–117 (2010).

    Article  Google Scholar 

  61. 61.

    A. S. Kishné, C. L. S. Morgan, and H. L. Neely, “How much surface water can gilgai microtopography capture?” J. Hydrol. 513, 256–261 (2014).

    Article  Google Scholar 

  62. 62.

    M. J. Knight, “Structural analyses and mechanical origins of gilgai at Boorook, Victoria, Australia,” Geoderma 23, 245–283 (1980).

    Article  Google Scholar 

  63. 63.

    A. Komornik, “General report,” in Proceedings of the 3rd International Conference on Expansive Soils, 1973 (Haifa, 1974), Vol. 2, pp. 177–181.

    Google Scholar 

  64. 64.

    A. Komornik and J. G. Zeitlin, “Laboratory determination of lateral and vertical stresses in compacted swelling clay,” J. Mater. 5, 108–128 (1970).

    Google Scholar 

  65. 65.

    I. Kovda, O. Chichagova, and C. I. Mora, “Organic matter in a gilgai soil complex, southern Russia: chemical and isotopic compositions,” Adv. Geoecol. 36, 45–56 (2005).

    Google Scholar 

  66. 66.

    I. Kovda, W. Lynn, D. Williams, and O. Chichagova, “Radiocarbon age of Vertisols and its interpretation using data of gilgai complex in the North Caucasus,” Radiocarbon 43, 603–609 (2001).

    Google Scholar 

  67. 67.

    I. Kovda, C. I. Mora, and L. P. Wilding, “Stable isotope compositions of pedogenic carbonates and soil organic matter in a temperate climate Vertisol with gilgai, southern Russia,” Geoderma 136 (1–2), 423–435 (2006).

    Article  Google Scholar 

  68. 68.

    I. Kovda, E. Morgun, and T. W. Boutton, “Vertic processes and specificity of organic matter properties and distribution in Vertisols,” Eur. Soil Sci. 43 (13), 1467–1476 (2010).

    Article  Google Scholar 

  69. 69.

    I. V. Kovda, L. P. Wilding, and L. R. Drees, “Micromorphology, submicroscopy and microprobe study of carbonate pedofeatures in a Vertisol gilgai soil complex, South Russia,” Catena 54, 457–476 (2003).

    Article  Google Scholar 

  70. 70.

    G. W. Kunze and E. H. Templin, “Houston black clay, the type Grumusol: II. Mineralogical and chemical characterization,” Soil Sci. Soc. Am. Proc. 20, 91–96 (1956).

    Article  Google Scholar 

  71. 71.

    L. W. Liu, “Radiocarbon dating of vertisols in China,” Pedosphere 6 (2), 147–153 (1996).

    Google Scholar 

  72. 72.

    M. W. Lowole, “Properties, management and classification of vertisols in Malawi,” in The Fifth Meeting of the Eastern African Sub-committee for Soil Correlation and Land Evaluation. Wad Medani, Sudan. World Soil Resources Report No. 56, (Food and Agriculture Organization, Rome, 1985), pp. 110–130.

    Google Scholar 

  73. 73.

    B. Maxwell, The origin of hog-wallows and gilgai landforms–PART I, 2013. http://thecosmiccorner.blogspot.ru/2013/10/the-origin-of-hogwalllows-and-gilgai.html

    Google Scholar 

  74. 74.

    J. W. McGarity, “Vertisols of Australia,” in Proceedings of Fifth International Soil Classification Workshop, Sudan, 1982 (Soil Survey Administration, Khartoum, Sudan, 1985), pp. 173–190.

    Google Scholar 

  75. 75.

    A. R. Mermut, G. S. Dasog, and G. N. Dowuona, “Soil morphology,” in Vertisols and Technologies for Their Management. Developments in Soil Science, Ed. by N. Ahmad and A. Mermut (Elsevier, Amsterdam, 1996), Vol. 24, Chap. 4, pp. 89–114.

    Google Scholar 

  76. 76.

    D. L. Miller, C. I. Mora, and S. G. Driese, “Isotopic variability in large carbonate nodules in Vertisols: Implications for climate and ecosystem assessments,” Geoderma 142, 104–111 (2007).

    Article  Google Scholar 

  77. 77.

    W. L. Miller, A. S. Kishné, and C. L. S. Morgan, “Vertisol morphology, classification, and seasonal cracking patterns in the Texas Gulf coast prairie,” Soil Surv. Horiz. 51, 10–16 (2010).

    Article  Google Scholar 

  78. 78.

    J. Moeyersons, J. Nyssen, J. Poesen, J. Deckers, and M. Haile, “On the origin of rock fragment mulches on vertisols: a case study from the Ethiopian highlands,” Geomorphology 76, 411–429 (2006).

    Article  Google Scholar 

  79. 79.

    N. K. Moustakas, “A study of Vertisol genesis in North Eastern Greece,” Catena 92, 208–215 (2012).

    Article  Google Scholar 

  80. 80.

    R. S. Murthy, J. C. Bhattacharjee, and R. J. Landey, “Vertisols and associated soils of India: distribution, morphology, chemistry and taxonomy,” in Proceedings of Fifth International Soil Classification Workshop, Sudan, 1982 (Soil Survey Administration, Khartoum, Sudan, 1985), pp. 205–219.

    Google Scholar 

  81. 81.

    A. L. Newman, “Vertisols in Texas-some comments,” Soil Surv. Horiz. 24, 8–20 (1983).

    Article  Google Scholar 

  82. 82.

    L. C. Nordt, L. P. Wilding, W. C. Lynn, and C. C. Crawford, “Vertisol genesis in a humid climate of the coastal plain of Texas, USA,” Geoderma 122, 83–102 (2004).

    Article  Google Scholar 

  83. 83.

    H. Paquet, G. Bocquer, and G. Millot, “Néoformation et degradation des minéraux argileux dans certains solonetz solodisés et vertisols du Tchad,” Bull. Serv. Carte Geol. Als. Lorr. Strasbourg 19, 295–322 (1966).

    Google Scholar 

  84. 84.

    I. R. Paton, “Origin and terminology for gilgai in Australia,” Geoderma 11, 221–242 (1974).

    Article  Google Scholar 

  85. 85.

    M. E. Probert, I. F. Fergus, B. J. Bridge, D. McGarry, C. H. Thompson, and J. S. Russell, The Properties and Management of Vertisols (Centre for Agriculture and Bioscience International, Wallingford, Oxon, UK, 1987).

    Google Scholar 

  86. 86.

    J. S. Russell, “Effects of land smoothing on gilgaied Brigalow soils on certain soil properties and plant growth,” Trop. Grassl. 7, 209–218 (1973).

    Google Scholar 

  87. 87.

    H. W. Scharpenseel, J. Freytag, and P. Becker-Heidmann, “C-14-Altersbestimmung und δ13C-Messungen an Vertisolen, unter besonderer Berusksichtigung der Geizirabden des Sudan,” Z. Pflanzenernaehr. Bodenkd. 149, 277–289 (1986).

    Article  Google Scholar 

  88. 88.

    H. W. Scharpenseel, F. Pietig, H. Schiffman, and P. Becker-Heidmann, “Radiocarbon dating of soils: database contribution by Bonn and Hamburg,” Radiocarbon 38 (2), 277–293 (1996).

    Google Scholar 

  89. 89.

    H. W. Scharpenseel and F. Pietig, “University of Bonn natural radiocarbon measurements V,” Radiocarbon 15 (1), 13–41 (1973).

    Google Scholar 

  90. 90.

    H. W. Scharpenseel and F. Pietig, “University of Bonn natural radiocarbon measurements. VI,” Radiocarbon 15 (2), 252–279 (1973).

    Google Scholar 

  91. 91.

    J. L. Sehgal and J. C. Bhattacharjee, “Typic vertisols of India and Iraq–their characterization and classification,” Pedologie 38-1, 67–95 (1988).

    Google Scholar 

  92. 92.

    Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Agric. Handb. 436 (US Department of Agriculture, US Soil Conservation Service, Washington, DC, 1999).

  93. 93.

    I. Stephen, E. Bellis, and A. Muir, “Gilgai phenomena in tropical black clays of Kenya,” J. Soil Sci. 7 (1), 1–9 (1956).

    Article  Google Scholar 

  94. 94.

    C. H. Thompson and G. G. Beckmann, “Gilgai in Australian black earth and some of its effects on plants,” Trop. Agric. 59, 149–156 (1982).

    Google Scholar 

  95. 95.

    J. H. V. van Baren and W. G. Sombroek, “Vertisols in the collection of the international soil museum and some suggestions on classification,” in Proceedings of fifth International Soil Classification Workshop, Sudan, 1982 (Soil Survey Administration, Khartoum, Sudan, 1985), pp. 63–67.

    Google Scholar 

  96. 96.

    K. van der Meer, “Gilgai morphology of the Lufira Plain,” in Transactions of 8th International Congress of Soil Science (Bucharest, Romania, 1964), pp. 697–701.

    Google Scholar 

  97. 97.

    E. van Ranst, M. Dumon, A. R. Tolossa, J.-T. Cornelis, G. Stoops, R. E. Vandenberghe, and J. Deckers, “Revising ferrolysis process in the formation of Planosols for rationalizing the soils with stagnic properties in WRB,” Geoderma 163, 265–274 (2011).

    Article  Google Scholar 

  98. 98.

    R. Webster, “Spectral analysis of gilgai soil,” Austral. J. Soil Res. 15, 191–204 (1977).

    Article  Google Scholar 

  99. 99.

    E. M. White, “Soil cycling and texture differentiation in wavy gilgai,” Proc. S. D. Acad. Sci. 49, 90–97 (1970).

    Google Scholar 

  100. 100.

    E. M. White and R. G. Bonestell, “Some gilgaied soils in South Dakota,” Soil Sci. Soc. Am. Proc. 24 (4), 305–309 (1960).

    Article  Google Scholar 

  101. 101.

    L. P. Wilding, “Genesis of vertisols,” in Proceedings of Fifth International Soil Classification Workshop, Sudan, 1982 (Soil Survey Administration, Khartoum, Sudan, 1985), pp. 47–62.

    Google Scholar 

  102. 102.

    Vertisols: Their Distribution, Properties, Classification and Management, Ed. by L. P. Wilding and R. Puentes (Texas A&M University, College Station, TX, 1988).

  103. 103.

    L. P. Wilding and D. Tessier, “Genesis of vertisols: shrink-swell phenomena,” in Vertisols: Their Distribution, Properties, Classification and Management, Ed. by L. P. Wilding and R. Puentes (Texas A&M University, College Station, TX, 1988), pp. 55–81.

    Google Scholar 

  104. 104.

    L. P. Wilding, D. Williams, W. Miller, T. Cook, and H. Eswaran, “Close interval spatial variability of vertisols: a case study in Texas,” in Proceedings of the Sixth Soil Correlation Meeting (ISCOM) “Characterization, Classification, and Utilization of Cold Aridisols and Vertisols, Ed. by J. M. Kimble (National Soil Survey Center, Lincoln, NE, 1990), pp. 232–247.

    Google Scholar 

  105. 105.

    R. N. Yong and B. P. Warkentin, Introduction to Soil Behavior (Macmillan, New York, 1966).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. B. Khitrov.

Additional information

Original Russian Text © N.B. Khitrov, 2016, published in Pochvovedenie, 2016, No. 3, pp. 283–298.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khitrov, N.B. Properties and regimes of vertisols with gilgai microtopography (a review). Eurasian Soil Sc. 49, 257–271 (2016). https://doi.org/10.1134/S1064229316030054

Download citation

Keywords

  • gilgai soil complexes
  • slickensides
  • cracks
  • carbonates
  • bowl-shaped and diapiric morphostructures