I. Yu. Savin1, Yu. I. Vernyuk1, I. Faraslis2
1V.V. Dokuchaev Soil Science Institute, 119017 Moscow, Pyzhevskii 7, bld.2
2Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
Based upon a comprehensive review of literature sources it seemed reasonable to show that the today’s level of technical development and its simplicity allow considering pilotless aircrafts as a reliable tool for operative monitoring of soils and crops on fields and areas of small farms. The possible use of the imagery obtained by pilotless aircrafts is predetermined by a type of survey apparatus to a considerable extent. At present, the miniature survey apparatus permits to obtain images, the spectral resolution of which may be compatible with those obtained by satellites. Today, the images of pilotless aircrafts are used to give a visual assessment of any object to be surveyed. However, there are publications devoted to computer analysis of images obtained for agricultural purposes. The experience is becoming common to use the data of pilotless aircrafts and their computer analysis for creating digital models of the field relief, monitoring over the soil erodibility and operative valuation of the state of agricultural crops. Being compared with satellite imagery,
the data of pilotless aircrafts have a number of advantages in aerial surveying. The shortcoming consists only in insufficient miniaturization of surveying apparatus and impossible monitoring of large areas.
Keywords: pilotless aircrafts, remote sensing techniques, soil interpretation, state of crops.
REFERENCES
1. Andronikov V.L. Aerokosmicheskie metody izucheniya pochv, Moscow, 1979. 280 p.
2. Afanas'eva T.V., Trifonova T.A. Tipologiya poimennykh zemel' r. Obi naosnove kompleksnogo deshifrirovaniya materialov aerokosmicheskoi s"emki // Vest. Mosk. un-ta. Ser. 17, pochvovedenie, 1983, No. 4, pp. 3–9.
3. Aerokosmicheskie metody v pochvovedenii i ikh ispol'zovanie v sel'skom khozyaistve, Moscow, 1990. 247 p.
4. Vernyuk Yu.I., Anisimov K.B., Bakulin D.A., Gaidarov K.A., Dokukin P.A., Drozhzhin O.V., Kleshchenko M.M., Kuzin A.V., Nagornyi V.D., Poddubskii A.A. Opyt kompleksnogo primeneniya bespilotnykh i sverkh-legkikh pilotiruemykh letatel'nykh apparatov, sistem global'nogo pozi-tsionirovaniya I geoinformatsionnykh sistem dlya issledovaniya, karto-grafirovaniya i monitoringa pochvennogo i rastitel'nogo pokrova kho-zyaistv // Innovatsionnye protsessy v APK, Moscow, 2013, pp. 423–428.
5. Vernyuk Yu.I., Savin I.Yu., Gaidarov K.A. Opyt primeneniya lokal'-noi aerofotos"emki, geodezicheskikh metodov i GIS tekhnologii pri is-sledovanii pochv i ob"ektov okruzhayushchei sredy dlya ekologicheskoi eks-pertizy // Nauki o Zemle, 2012, No. 2, pp. 7–12.
6. Kir'yanova E.Yu., Savin I.Yu. O vozmozhnostyakh otsenki kontrastnosti pochvennogo pokrova Saratovskogo Povolzh'ya po sputnikovym dannym Landsat // Tsifrovaya pochvennaya kartografiya: teoreticheskie i eksperi-mental'nye issledovaniya, Moscow, 2012, pp. 189–209.
7. Kir'yanova E.Yu., Savin I.Yu. Neodnorodnosti posevov, opredelyaemye posputnikovym dannym MODIS, kak indikator kontrastnosti pochven-nogopokrova // Dokl. RASKhN, 2013, No. 3, pp. 6–39.
8. Konyushkova M.V. Kartografirovanie pochvennogo pokrova i zasolen-nostipochv solontsovogo kompleksa na osnove tsifrovogo analiza kosmi-cheskois"emki: Dis. … k, pp.-kh. n, Moscow, 2010. 300 p.
9. Kravtsova V.I., Nikolaeva p.A. Vozmozhnosti ispol'zovaniya mnogozonal'nykh snimkov v issledovanii pochvennogo pokrova // Kosmicheskayas"emka i tematicheskoe kartografirovanie, Moscow, 1979, pp. 148–154.
10. Krenke A.N. Korrektsiya pochvennykh kart na osnove dannykh distantsionnogo zondirovaniya i tsifrovoi modeli rel'efa // Tsifrovaya pochvennaya kartografiya: teoreticheskie i eksperimental'nye issledovaniya, Moscow, 2012, pp. 284–302.
11. Levengaupt A. I. Opyt primeneniya aerofotos"emki pri izuchenii Dneprovskikh plaven' // Materialy po probleme Nizhnego Dnepra, T. 2, 1931, pp. 143–152.
12. Lupyan E.A., Savin I.Yu., Bartalev p.A., Tolpin V.A., Balashov I.V., Plotnikov D.E. Sputnikovyi servis monitoringa sostoyaniya rastitel'-nosti (“Vega”) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, T. 8, No. 1, pp. 190–198.
13. Puzachenko M.Yu. Mnogomernyi analiz pochvennogo pokrova na osnove polevoi i distantsionnoi informatsii // Tsifrovaya pochvennaya kartogra-fiya:teoreticheskie i eksperimental'nye issledovaniya, Moscow, 2012, pp. 252–269.
14. Savin I.Yu. Deshifrirovanie pochvennogo pokrova lesostepi Tsen-tral'nochernozemnogo raiona po srednemasshtabnym kosmicheskim snimkam: Extended abstract of candidate’s thesis, Moscow, 1990. 27 p.
15. Savin I.Yu., Simakova M.S. Sputnikovye tekhnologii dlya inventari-zatsii I monitoringa pochv v Rossii // Problemy distantsionnogo zondi-rovaniya Zemli iz kosmosa, Moscow, 2012, T. 9, No. 5, pp. 104–115.
16. Selyakov L. Ya. Iz opyta Kazakhstanskoi s"emki, Moscow, 1932.
17. Simakova M.S. Kartografirovanie pochvennogo pokrova s ispol'zo-vaniem materialov aero- i kosmicheskoi fotos"emki: Extended abstract of candidate’s thesis, Moscow, 1984, 43 p.
18. Smetanin I.S. Iz opyta ispol'zovaniya materialov aerofotos"emki pri pochvennykh issledovaniyakh // Pochvovedenie, 1940, No. 12, pp. 66–72.
19. Tereshenkov O.M. Pochvenno-ekologicheskoe kartografirovanie na osnove aerokosmicheskoi informatsii dlya tselei okhrany i optimizatsii pochvennykh resursov: Extended abstract of Doctor’s thesis, St. Peterburg, 1993, 54 p.
20. Yakushev V.P., Lekomtsev P.V., Matveenko D.A., Petrushin A.F., Yakushev V.V. Primenenie distantsionnogo zondirovaniya v sisteme tochnogo zemledeliya // Vest. RASKhN, 2015, No. 1, pp. 23–25.
21. Capolupo A., Pindozzi S., Okello K., Fiorentino N., Boccia L. Photogrammetry for environmental monitoring: The use of drones and hydrological models for detection of soil contaminated by copper // Sci. Total Environm., 2015, Vol. 514, pp. 298–306.
22. Nex F., Remondino F. UAV for 3Dmapping applications: a review // Appl. Geomat., 2014, Vol. 6(1), pp. 1–15. http://dx.doi.org/10.1007/S12518-013-0120-x.
23. Pierrot-Deseilligny M., De Luca L., Remondino F. Automated image-based procedures for accurate artifacts 3D modeling and orthoimage generation // Geoinforms FCE CTU J., 2011, Vol. 6, pp. 291–299.