V.V. Dokuchaev Soil Science Institute

E-mail: info@esoil.ru
Tel/Fax: +7 (495) 951-50-37
search  search  

The properties and the mineralogical composition of dark-humus quazi-glei solonchak solonetzic cryoturbed cryosols of Barguzin Hollow (Buryatia)

V. L. Ubugunov1, N. B. Khitrov2, N. P. Chizhikova2, V. I. Ubugunova 1, E. B. Varlamov2, A. D. Zhambalova1, E. S. Chechetko2, N. A. Churilin1

1Institute of General and Experimental Biology, Russia, 670047 Ulan-Ude, Sakhyanova street, 6

2V.V. Dokuchaev Soil Science Institute, Russia, 119017, Moscow, Pyzhevskii per. 7-2

Morphological, physical-chemical properties, texture, salt composition mineralogical composition of the particle-size fractions <1, 1-5 and >5 mkm of dark-humus quasigleyic solonchakous solonetzic cryoturbated deeply permafrost loamy-sandy soil developed from alluvial sediments (Salic Mollic Reductaquic Turbic Cryosol (Eutric, Loamic, Calcaric, Fluvic, Sodic)) are presented. The soil is situated at the northern-eastern part of Barguzin Depression in the impact zone of dumping of nitrogen siliceous thermal underground waters of Kuldur type (Kuchiger springs). The soil forms from materials of disintegration of high-content-potassium calcareous-alkali granites of Barguzin complex of Angara-Vitim Batholith. It was found soil salinity of weak to very strong degree, presumably sulfate-sodium with gypsum. There is a net of gypsum filaments in the solum that is observed by morphological analysis. Low amount of rectorite was found in clay fraction of undisturbed layers of alluvium at the depth of 54-145 cm in the studied soil profile. Regular structure of rectorite comprised mica (A) and smectite (B) packets with alternation motive ABAB… is transformed into irregular structure of mica-smectite interstratifications by impact of soluble sodium salts and cryoturbation of soil material in soil horizons at the depth of 0-54 cm formed from the alluvium. Regional peculiarity of studied soil is small shear of quartz in silt and sand fractions that is a result of mineral composition of biotite and amphibole-biotite granites and granitoids. Irregular mica-smectite interstratifications with high shear (>50%) of smectite packets are destroyed by impact of sodium sulfate and hydrocarbonates hydrogenic accumulation in the solum and are partially illuviated into middle part of soil profile with formation of humus-clay cutans on the lateral sides of aggregates by infiltration of rain waters. Existence of humus-clay cutans is an evidence of weak degree of solonetzic process.

Keywords: rectorite, irregular interstratifications, quartz, feldspars, hydromicas, soda-sulfate salinity, gypsum, clay cutans.

DOI: 10.19047/0136-1694-2018-92-62-94

Citation: Ubugunov V.L., Khitrov N.B., Chizhikova N.P., Ubugunova V.I., Varlamov E.B., Zhambalova A.D., Chechetko E.S., Churilin N.A. The properties and the mineralogical composition of dark-humus quazi-glei solonchak solonetzic cryoturbed cryosols of BarguzinHollow (Buryatia), Dokuchaev Soil Bulletin, 2018, Vol. 92, pp. 62-94. doi: 10.19047/0136-1694-2018-92-62-94


1.           Alekseeva T.V., Alekseev A.O., Demkin V.D., Alekseeva V.A., Sokolovska Z., Hajns M., Kalinin P.I. Physical-chemical and Mineralogical Diagnostic Features of Solonetzic Process in Soils of the Lower Volga Region in the Late Holocene, Eurasian Soil Science, 2010, V. 43 (10), pp. 1083-1101. doi: 10.1134/S1064229310100029

2.   Arinushkina E.V. Guide for chemical soil analysis, Moscow, 1961. 491 p.

3.   Borzenko S.G., Dronova T.Ya., Kolesnikov A.V., Sokolova T.A., Tolpeshta I.I., Sizemskaja M.L. Chemical-mineralogical characteristics of the solonchakous Solonetz and midow-chestnut soil, Moscow University Soil Science Bulletin, 2003, No. 3, pp. 3-8.

4.    Borodin L.S. Granites of the Angara-Vitim Batholith: model petro-chemical and genetic analysis, Litologiya, 2006, No. 4, pp. 40-56

5.   Vadyunina A.F., Korchagina Z.A. Methods for study of soil physical properties, Moscow, Agropromizdat Publ., 1986, 416 p.

6.   Geological dictionary: in two volumes. Vol. 2. N-Ya. Paffengol'ts K.N. (ed.). M.: Nedra, 1978. 456 p.

7.   Gorbunov N.I. Methods of soil preparation for mineralogical analysis, Methods of mineralogical and micromorphological studies of soils. Moscow: Nauka Publ., 1971, pp. 5-15.

8.   Gradusov B.P. Minerals with interstratificated structure in soils, Moscow: Nauka Publ., 1976. 128 p.

9.   Gradusov B.P., Kapitonov M.D., Chizhikova N.P. Study of the labile component in rectorite from Kuli-Kolon saturated by interlayer cations, Proceedings of all-Union mineralogical society. Ser. II, Vol. 96. Moscow–Leningrad, 1967, pp. 728-732.

10. Gradusov B.P., Chizhikova N.P. Interlayer cations in rectorite of Kuli-Kolon (Tajikistan), Roentgenography of mineral raw materials. Moscow–Leningrad, Nauka Publ., 1966. No. 7.

11. Gradusov B.P., Chizhikova N.P., Travnikova L.S. On the nature of the interstratifications in rectorite of the Dagestan, Doklady Akademii nauk SSSR, 1968, V. 180, No. 2, pp. 446-448.

12. Dement'eva T.G. Chemical-mineralogical characteristics of soils of solonetz complex at the desert-steppe of the Trans-Volga region, Pochvovedenie, 1975,  No. 4, pp. 98-112.

13. Elovskaja L.G. Classification and diagnostics of permafrost soils of Yakutiya, Yakutsk: Yakusk branch of Siberian Branch of the USSR Academy of Sciences, 1987. 171 p.

14. Zhambalova A.D., Ubugunov V.L., Ubugunova V. I., Tsyrempilov E. G. Morphological and agrochemical features of the salt-affected soils of the Northern margin of the Central-Asian zone, Vestnik Burjatskoi gosudarstvennoi sel'skokhozyaistvennoi akademii im. V.R. Filippova. 2017. No. 1 (46). Pp. 6-13.

15. Zamana L.V. Permafrost-hydrological and ameliorative conditions of the Barguzin Depression. Novosibirsk: Nauka, Sibirskoe otd-e, 1988. 134 p.

16. Classification and diagnostics of soils of Russia. Smolensk, 2004. 342 p.

17. Classification and diagnostics of soils of the USSR. Moscow, Kolos Publ.,1977. 223 p.

18. Kornblyum E.A., Dement'eva T.G., Zyrin N.G., Birina A.T. Change of clay minerals during formation of the southern and Vertic chernozems, lyman solod and solonetz, Pochvovedenie, 1972,  No. 1, pp. 67-85.

19. Kostov I. Mineralogy. Moscow: Mir Publ., 1971, 584 p.

20. Markina N.A. The problem of the origin of the Angara-Vitim Batholith (the experience of comparative analysis of the Vatim-Kansk and Zagan complexes), Vestnik Voronezhskogo un-ta. Geologija, 2014, No. 1, pp. 93-103.

21. Noskov D.A. Geochemical features and conditions of formation of the Angara-Vitim Batholith (The Eastern PreBaikal Rerion), Doctor’s thesis, Irkutsk, 2011. 204 p.

22. Plyusnin A.M., Zamana L.V., Shvartsev S.L., Tokarenko O.G., Chernjav-skiy M.K. Hydrogeological peculiarities of nitrogen therms’ composition at the Baikal rift zone, Russian Geology and Geophysics, 2013, V. 54, No. 54, pp. 647-664.

23. Field guide for identification of soils of Russia. Moscow, V.V. Dokuchaev Soil Science Institute, 2008. 182 p.

24. Soils of the Barguzin Depression. Novosibirsk: Nauka Publ., 1983. 269.

25. The X-ray identification and crystal structures of clay mineral. G. Brown (ed.). Moscow, Mir Publ., 1965, 599 p. (Translation into Russian from: The X-ray identification and crystal structures of clay mineral. G. Brown (ed.). Mineralogical Society (Clay Minerals Group). London. 1961).

26. Guide for the X-ray study of minerals. V.A. Frank-Kamenetsky (ed.). L.: Nedra, Leningrad otd., 1975.

27. Sokolova T.A., Dronova T.Ya., Tolpeshta I.I. Clay Minerals in soils. Tula, 2005, 336 p.

28. Travnikova L.S. Mineralogical composition of the fraction <1 mkm of several solonetz of chernozem and chestnut-soil zones, Dokuchaev Soil Bulletin, 1968, V. 2, pp. 52-60.

29. Ubugunov V. L., Ubugunova V.I., Cyrempilov E.G. Soil and landforms of the Barguzin Hollow. Ulan-Ude, 2016. 212 p.

30. Khitrov N.B., Ljubimova I.N. Chapter 11. Theoretical and methodical bases of prevention of secondary solonetzization of soils // Scientific bases of prevention of soil (land) degradation of agricultural lands of Russia and elaboration of systems of reproduction their fertility in adaptation-landscape agriculture: V.1. Theoretical and methodological basis for the prevention of soil (land) degradation of agricultural lands. Collective monograph, Moscow, 2013, pp. 465-516.

31. Chernousenko G.I., Pankova E.I., Kalinina N.V.,  Ubugunova V.I., Rukhovich D.I., Ubugunov V.L., Tsyrempilov E.G. Salt-Affected Soils of the Barguzin Depression, Eurasian Soil Science, 2017, V. 50 (6), pp. 646-663. doi: 10.1134/S1064229317060035

32. Chizhikova N.P., Gradusov B.P., Travnikova L.S Peculiarities of soil clay material profiles at the Baraba forest-steppe in relation to their evolution. Nauchnye doklady vysshej shkoly. Ser. biol. nauki., 1973, № 8. C. 99-106.

33. Chizhikova N.P., Khitrov N.B. Diversity of clay minerals in soils of solonetzic complexes in the southeast of Western Siberia, Eurasian Soil Science. 2016, V. 49, No. 12, pp. 1419-1431. doi: 10.1134/S106422931612005X

34. Chizhikova N.P., Khitrov N. B., Varlamov E.B., Churilin N.A. The profile distribution of minerals within the solonetz in Yergeni, Dokuchaev Soil Byulletin, 2018, V. 91, pp. 63-84. 10.19047/0136-1694-2018-91-63-84

35. Chizhikova N.P., Khitrov N.B., Varlamov E.B., Churilin N.A. Profile distribution of minerals in solonetz at the Presivash region. Tavricheskii vestnik agrarnoi nauki. 2017. №2. 103-116

36. Chizhikova N.P., Khitrov N.B., Samsonov A.A., Varlamov E.B., Churilin N.A., Rogotneva L.V., Chevardin Y.I. Minerals in Three-component combination of Agrochernozems in the Kamennaya Steppe, Eurasian soil science, 2017, V. 50 (4), pp. 456-470. doi: 10.1134/S1064229317020028

37. Chizhikova N.P., Khitrov N.B., Tronza G.E., Koltsov S.A., Varlamov E.B., Chechetko E.S., Churilin N.A. Mineralogical composition of Particle-size fractions of Solonetzes from the North Crimean Lowland, Eurasian soil science, 50 (12), 1468-1482 (2017). doi 10.1134/S1064229317120055

38. Cygankov A.A., Litvinovskiy B.A., Dzhan' B.M., Reykov M., Lyu D.I., Larionov A.N., Presnyakov S.L., Lepekhina E.M., Sergeev S.A. Magma events’ sequence at the late Paleozoic stage of magmatism in Transbaikal Region (results of U-Pb isotope dating), Geologiya i geofizika, 2010, V. 51, No. 9, pp. 1249-1276.

39. Shartsev S.L., Zamana L.V., Plyusnin A.M., Tokarenko O.G. Equilibrium between nitrogen terms at Baykal rift zone and minerals of water-accommodating rocks as a basis for detection of processes of their formation // Geokhimiya. 2015. No. 8. Pp. 720-733. doi:10.7868/S0016752515060084

40. Yarilova E.A. Mineralogical composition of chernozem at kamennaya Steppe and impact of man-made forest plantations and crop rotations with grasses on it, Problems of grass-crop-rotation farming system. Vol. 2. Results of work at the study of soil changes under impact of complex actions suggested by Dokuchaev – Kostychev – Wil’yams. Moscow, 1953, pp. 205–266.

41. Yas'ko V.G. Role of modern cryogenic processes in the formation of the underground water composition in hydrogeological rock mass at the Transbaikal region, Issues of hydrology in permafrost zone. Yakutsk, 1975. C. 1133-142.

42. Acker J.G., Bricker O.P. The influence of pH on biotite dissolution and alteration kinetics at low temperature, Geochimica et Cosmochimica Acta., 1992, V. 56, pp. 3073–3092.

43. Biscaye P.E. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction // Am. Mineralogist, 1964, V. 49, No. 9/10, pp. 1281-1289.

44. Biscaye P.E. Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans, Geol. Soc. Am. Bull., 1965, V. 76, pp. 803–832.

45. Cook H.E., Johnson P.D., Matti J.C., Zemmels I. Methods of sample preparation and X-ray diffraction data analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside // Hayes D.E., Frakes L.A., et al., Init. Repts. DSDP, 28: Washington (U.S. Govt. Printing Office), 1975. P. 999–1007.

46. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

47. Price J.R., Velbel M.A. Rates of Biotite Weathering, and Clay Mineral Transformation and Neoformation, Determined from Watershed Geochemical Mass-Balance Methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA, Aquat. Geochem., 2014, V. 20, pp. 203–224. https://doi.org/10.1007/s10498-013-9190-y

48. Ubugunov V.L. Hydromorphic solonetzs of northern Buryatia (Russia), Central Asian Enviromental and agricultural problems, potential, solutions. Internetional conference, Darhan-Uul, Mongolia, 2016, pp. 151–156