THE METHOD OF MICROBIOLOGICAL SOIL INVESTIGATIONS WITHIN THE FRAMEWORK OF THE PROJECT “MICROBIOME OF RUSSIA”
T. I. Chernov, V. A. Kholodov, B. M. Kogut, A. L. Ivanov
V.V. Dokuchaev Soil Science Institute, Pyzhevskii per. 7, Moscow, 119017 Russia
The methods of Russian soil biology for the purposes of the investigations of soils microbiome were studied. The most important methods are cross-disciplinary investigations of plant and microbial interactions, the role of microbiome in the forming of soil fertility and carbon cycle. For the purposes of the most complete description of soil microbiome functions we suggest to combine the methods of metagenomics (for the purposes of the assessment of the phylogenic diversity of the microorganisms), biomarkers analysis (for the purposes of determination of the functional diversity) and the changes in the enzyme activity (for the purposes of the assessment of the actual functioning of soils). The investigation of correlation of the structural soil hierarchy (from aggregates and microloci to the soil areas) and levels of microbial community organization (from microbial populations to bio-geographic regularities) will allow us to understand better the distribution and common specificities of soil and microorganisms interactions. Along with the investigation of spatial organization we suggest to study the dynamics of the soil microbiomes on different time lines: short-term changes (on the field monitoring areas), transformation during the soil forming process (on the “chronosequences” of the soil of a different age) and at the geologic time scale (on the example of buried soils). In this paper we consider the importance of the investigation of the diversity of the soil microorganisms as a source of the suppressing activity of soils as the largest depository of genetic information, important agent of the emission and fixation of atmospheric carbon. The comparative analysis of microbial diversity of disturbed and undisturbed soils and the assessment of outer impact on the soil microbiome is necessary for the preservation of soil biodiversity as one of the most valuable ecologic and biotechnologic resource.
Keywords: metagenome, molecular markers, enzyme activity, soil suppressivity, ecology of microorganisms.
Ссылки для цитирования: Чернов Т.И., Холодов В.А., Когут Б.М., Иванов А.Л. Методология микробиологических исследований почвы в рамках проекта «микробиом России» // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. Вып. 87. С. 100-113. doi: 10.19047/0136-1694-2017-87-100-113
Chernov T.I., Kholodov V.A., Kogut B.M., Ivanov A.L. The Method of Microbiological Soil Investigations within the Framework of the Project “Microbiome of Russia”, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2017, Vol. 87, pp. 100-113. doi: 10.19047/0136-1694-2017-87-100-113
REFERENCES
1. Andronov E.E., Ivanova E.A., Pershina E.V., Orlova O.V., Kruglov Yu.V., Belimov A.A., Tikhonovich I.A. Analysis of soil microbiome indicators in processes of soil formation, organic matter transformation and processes involved with fine regulation of vegetative processes, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2015, V. 80, pp. e37-e46.
2. Vaksman Z.A. Antibiotics, their nature, preparation and use. Lectures given at the Academy of Sciences of the USSR 8-12 August 1946, Moscow: Publ. USSR Academy of Sciences, 1946, 112 p. (in Russian)
3. Vaksman S.A. Humus. The origin of the chemical composition and its importance in nature, Moscow, 1937, 471 p. (in Russian)
4. Ivanov A.L. The soil cover Russia: State, information resources, research problems and applied problems (the 100th anniversary of academician G.V. Dobrovolsky), Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2016, V. 82, pp. 138-155. doi: 10.19047/0136-1694-82-139-155 (in Russian)
5. Korvigo I.O., Pershina E.V., Ivanova E.A., Chirak E.L., Provorov N.A., Andronov E.E., Matyuk N.S., Savos’kina O.A. Effect of long-term application of agrotechnical techniques and crops on soil microbial communities, Microbiology (Mikrobiologiya), 2016, V. 85 (2), рp. 231-242. doi: 10.1134/s0026261716020107
6. The Nobel Prize: Encyclopedia. Trans. from English, Moscow, Progress 1992. (in Russian)
7. United Nations. Paris Agreement, 2015, 32 p. http://unfccc.int/files/essential_background/convention/application/pdf/russian_paris_agreement.pdf
8. Soil Science. Part 2. Types of soils, their geography and the use / Ed. Kovda V.A., Rozanov B.G., Moscow, 1988, 368 p.
9. Semenov A.M., Sokolov M.S.The concept of soil health: fundamental and applied aspects of the justification of the evaluation criteria, Agrochimiya, 2016, No 1, p. 3–16 (in Russian)
10. Cyganov V.E., Andronov E.E., Dolgih E.A., Tihonovich I.A. Ot “ul'tra” do “meta”: sovremennye tehnologii v biologicheskih issledovanijah, Nanotehnologii. Jekologija. Proizvodstvo, 2013, No 3, pp. 37.
11. Chernov T.I., Tkhakakhova A.K., Ivanova E.A., Kutovaya O.V., and Turusov V.I. ''Seasonal Dynamics of the Microbiome of Chernozems of the Long-Term Agrochemical Experiment in Kamennaya Steppe,'' Eurasian Soil Science, 2015, 48 (12), pp. 1349–1353, doi: 10.1134/S1064229315120054
12. Burns R.G., DeForest J.L, Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraub M.N., Zoppini A. Soil enzymes in a changing environment: Current knowledge and future directions, Soil Biol. Biochem., 2013, V. 58, pp. 216–234. http://dx.doi.org/10.1016/j.soilbio.2012.11.009
13. Daniel R. The metagenomics of soil, Nature Reviews Microbiology, 2005, V. 3, pp. 470–478.
14. Derenne S., Quenea K. Analytical pyrolysis as a tool to probe soil organic matter, J. Analytical Appl. Pyrolysis, 2015, V. 111, pp. 108–120. http://dx.doi.org/10.1016/j.jaap.2014.12.001
15. Doran J.W., Sarrantonio M., Liebig M.A. Soil Health and Sustainability // Advances in Agronomy, 1996, V. 56, pp. 1–54.
16. Eilers K.G., Debenport S., Anderson S., Fierer N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil, Soil Biol. Biochem., 2012, V. 50, pp. 58–65. http://dx.doi.org/10.1016/j.soilbio.2012.03.011
17. Fierer N., Leff J.W., Adams B.J., Nielsen U.N., Bates S.T., Lauber C.L., Owens S., Gilberte J. A., Wall D.H., Caporaso J.G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes, PNAS, 2012, V. 109, No. 52, pp. 21390–21395. http://dx.doi.org/10.1073/pnas.1215210110
18. Handelsman J. Rondon M. R., Brady S. F., Clardy J., Goodman R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products, Chemistry Biology, 1998, V. 5, I. 10, pp. 245–249. http://dx.doi.org/10.1016/S1074-5521(98)90108-9
19. Hungate B.A., Mau R.L., Schwartz E., Caporaso J.G., Dijkstra P., van Gestel N., Koch B.J., Liu C.M., McHugh T.A., Marks J. C., Morrissey E., Price L.B. Quantitative microbial ecology through stable isotope probing, Appl. Environ. Microbiology, 2015, V. 81 (21), pp. 7570–7581. doi: 10.1128/АЕМ.02280-15
20. Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Appl. Environ. Microbiology, 2009, V. 75. No. 15, pp. 5111–5120.doi: 10.1128/AEM.00487-09
21. Loegering W.Q. Current concepts in interorganismal genetics, Annual Review of Phytopathology, 1978, V. 16, No. 1, pp. 309–320 http://dx.doi.org/10.1146/annurev.py.16.090178.001521
22. Lopez-Dias V., Borrego A. G., Blanco C. G., Arboleya M., Lopez-Saez J.A., López-Merino L. Biomarkers in a peat deposit in Northern Spain (Huelga de Bayas, Asturias) as proxy for climate variation, J. Chromatography A. 2010, V. 1217, pp. 3538–3546. http://dx.doi.org/10.1016/j.chroma.2010.03.038
23. Mazzola M. Mechanisms of natural soil suppressiveness to soilborne diseases, Antonie van Leeuwenhoek, 2002, V. 81, pp. 557–564. doi: 10.1023/A:1020557523557
24. Myrold D.D., Zeglin L.H., Jansson J.K. The potential of metagenomic approaches for understanding soil microbial processes, Soil Sci. Soc. Am. J., 2014, V. 78, №. 1, pp. 3–10. doi:10.2136/sssaj2013.07.0287dgs
25. Pershina E.V., Andronov E.E., Pinaev A.G., Provorov N.A. Recent advances and perspectives in metagenomic studies of soil microbial communities, Management of Microbial Resources in the Environment. Springer, 2013, pp. 141–166. doi: 10.1007/978-94-007-5931-2_7
26. Santana G.S., Knicker H., Gonzalez-Vila F.J., Gonzalez-Perez J.A., Dick D.P. The impact of exotic forest plantations on the chemical composition of soil organic matter in Southern Brazil as assessed by Py–GC/MS and lipid extracts study, Geoderma Regional, 2015, V. 4, pp. 11–19. http://dx.doi.org/10.1016/j.geodrs.2014.11.004
27. Sobeih K.L., Baron M., Gonzalez-Rodriguez J. Recent trends and developments in pyrolysis–gas chromatography, J. Chromatography A., 2008, V. 1186 (1–2), pp. 51–66.
28. Stone A.G., Scheuerell S.J., Darby H.M. Suppression of Soilborne Diseases in Field Agricultural Systems: Organic Matter Management, Cover Cropping, and Other Cultural Practices, Soil Organic Matter in Sustainable Agriculture, Ed. Magdoff F., Weil Raton R.R. et al. CRC PRESS, 2004, pp. 131–178.
29. Stulberg E., Fravel D., Proctor L. M., Murray D. M., LoTempio J., Chrisey L., Garland J., Goodwin K., Graber J., Harris M. C., Jackson S., Mishkind M., Porterfield D. M., Records A. An assessment of US microbiome research, Nature Microbiology, 2016, V. 1, pp. 15015. doi:10.1038/nmicrobiol.2015.15
30. Swenson T.L., Jenkins S., Bowen B.P., Northen T.R. Untargeted soil metabolomics methods for analysis of extractable organic matter, Soil Biol. Biochem. 2015, V. 80, pp. 189–198. http://dx.doi.org/10.1016/j.soilbio.2014.10.007
31. Torsvik V., Øvreås L. Microbial diversity and function in soil: from genes to ecosystems, Current Opinion in Microbiology, 2002, V. 5, I. 3, pp. 240–245. http://dx.doi.org/10.1016/S1369-5274(02)00324-7
32. Wardle D.A. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton, New Jersey, USA (Princeton University Press), 2002, 408 p.