V.V. Dokuchaev Soil Science Institute

E-mail: info@esoil.ru
Tel/Fax: +7 (495) 951-50-37
search  search  

The microagregate analysis of soils by the method of laser difraction: the specificities of sample preparation and result interpretation

A.V. Yudina1, Ye.Yu. Milanovskiy2

1V.V. Dokuchaev Soil Science Institute, Russia, 119017, Moscow, Pyzhevskii per. 7-2
2Lomonosov Moscow State University, Russia, 119991, Moscow, Leninskie Gory, 1

The opportunities of the laser diffraction method in the assessment of the microstructure condition of the soil are shown on the samples of humus layers of the following soils (agro soddy-podzolic (Eutric Albic Retisol (Loamic, Aric, Cutanic, Ochric)), Moscow oblast; gray (Luvic Greyzemic Phaeozem), Tulskie zaseky; migration micellar chernozem (Haplic Chernozem (Loamic, Pachic)), Kursk oblast; ferralitic (Rhodic Ferralsol), Norfolk island). The ways of samples preparation to the analysis are considered: boiling, stirring (80 min-1) of the attenuated water suspensions, intense stirring (2500 min-1) of the water suspensions, mixing of the suspension by the glass stick. The assessment of the preliminary saturation of samples by the distillated water before the samples preparation is given. The assessment of possibility of the implementation of soil micro structure indices, developed on the basis of sedimentation methods was made. The impossibility of the implementation of Kachinskiy dispersion coefficient to the results obtained by the method of laser diffraction was shown. The intense stirring (2500 min-1) of the water suspensions during the 10 minutes is recommended as the standard method of the soil samples preparation for the further microagregate analysis by the method of laser difraction. Such a way of soil samples preparation doesn’t lead to the modification of the properties of the solid body and provides the stability of the results. The results of the microagregate analysis by the method of laser diffraction, presented by the even distribution of particles by the size are characterized by the high informativity. The correlation of different ways of soil samples preparation along with the high accuracy of the method allow us to reveal the specificities of microstructure soil organization.

Keywords: soil, microstructure, samples preparation, laser diffraction

Citation: Yudina A.V., Milanovskiy E.Y. The microagregate analysis of soils by the method of laser difraction: the specificities of sample preparation and result interpretation, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2017, Vol. 89, pp. 3-20. doi:10.19047/0136-1694-89-3-20


REFERENCES

1.    Amezketa E., Aragüés R., Carranza R., Urgel B. Macro-and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction, Spanish J. Agricultural Res., 2003, V. 1, No. 4, pp. 83-94. doi: 10.5424/sjar/2003014-50.

2.    Beuselinck L., Govers G., Poesen J., Degraer G., Froyen L. Grain-size analysis by laser diffractometry: comparison with the sieve-pipette meth-od, Catena. 1998, V. 32, No. 3, pp. 193-208. doi: 10.1016/S0341-8162(98)00051-4

3.    Buurman P., Pape T., Muggler C.C. Laser grain-size determination in soil genetic studies 1. Practical problems// Soil science, 1997, V. 162, No. 3, pp. 211-218. doi: 10.1097/00010694-199703000-00007

4.    Chan K.Y., Heenan D.P. Microbial-induced soil aggregate stability under different crop rotations, Biol. Fertil. Soils, 1999, V. 30, No. 1, pp. 29-32. doi: 10.1007/s003740050583

5.    Chenu C., Plante A.F. Claysized organomineral complexes in a cultiva-tion chronosequence: revisiting the concept of the ‘primary organomineral complex’, Eur. J. Soil Sci. 2006, V. 57, No. 4, pp. 596-607. doi: 10.1111/j.1365-2389.2006.00834.x

6.    Edwards A.P., Bremner J.M. Dispersion of soil particles by sonic vibra-tion, J. Soil Sci. 1967а, V. 18, No. 1, pp.47-63. doi: 10.1111/j.1365-2389.1967.tb01487.x

7.    Edwards A.P., Bremner J.M. Microaggregates in soils, J. Soil Sci., 1967б, V. 18, No. 1, pp.6 4-73. doi: 10.1111/j.1365-2389.1967.tb01488.x

8.    Eshel G., Levy G.J., Mingelgrin U., Singer M.J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis, Soil Sci. Soc.Am. J. 2004, V. 68, No. 3, pp. 736-743. doi: 10.2136/sssaj2004.7360

9.    Fristensky A., Grismer M.E. A simultaneous model for ultrasonic aggregate stability assessment, Catena. 2008, V. 74, No. 2, pp.153. doi: 164.-10.1016/j.catena.2008.04.013

10.  Gedrojc К.КPochva kak kulturnaya sreda dlya selsko-hozyajstvennyh rastenij (Soil as cultural environment for crops), Nosovskaya selskohozyajstvennaya opytnaya stanciya, 1926, 42 p.

11. Kachanoski R.G., Voroney R.P., Gregorich E.G. Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions, Can. J. Soil Sci., 1988, V. 68, No. 2, pp. 395-403. doi: 10.4141/cjss88-036

12. Kachinskiy N. A. Mekhanicheskiy i mikroagregatnyy sostav pochvy, metody yego izucheniya (The Particle-Size and Microaggregate Composition of Soil and Methods of Studying It), Moscow, USSR Academy of Sciences Press, Pudl., 1958, 199 p.

13. Kaiser M., Berhe A. A., Sommer M., Kleber M. Application of ultra-sound to disperse soil aggregates of high mechanical stability // J. Plant Nutrition Soil Sci., 2012, V. 175, No. 4, pp. 521-526. doi: 10.1002/jpln.201300339.

14. Kemper W.D., Rosenau R.C. Aggregate stability and size distribution, Methods of Soil Analysis / Ed. Klute A. 1984. ISBN 978-0891188414.

15. Loizeau J. L., Arbouille D., Santiago S., Vernet J.P. Evaluation of a wide range laser diffraction grain size analyser for use with sediments, Sedi-mentology. 1994, V. 41, No. 2, pp. 353-361. doi: 10.1111/j.1365-3091.1994.tb01410.x

16. North P.F. Towards an absolute measurement of soil structural stability using ultrasound, J. Soil Sci. 1976. V. 27, No. 4, pp. 451-459. - 10.1111/j.1365-2389.1976.tb02014.x

17. Pini R., Guidi G. Determination of soil microaggregates with laser light scattering, Commun. Soil Sci. Plant Analysis. 1989, V. 20, No. 1-2, pp. 47-59. doi: 10.1080/00103628909368067

18. Shein E.V. Kurs fiziki pochv (Course of soil physics), Moscow, Mosk. Gos. Univ. Publ., 2005, 432 p.

19. Shein E.V., Pochatkova T.N. II.3. Metody opredeleniya plotnosti tverdoj fazy pochv (Methods for determining soil particle density)Teorii i metody fiziki pochv (Theory and methods of soil physics). Moscow, Grif i K, Publ., 2007б, pp. 40-42. ISBN 978-5-8125-0921-7

20. Shein E.V., Pochatkova T.N. IV.1. Mikroagregatnyj analiz pochv (Soil microaggregate analysis, Teorii i metody fiziki pochv (Theory and methods of soil physics). Moscow, Grif i K, Publ., 2007б. pp. 40-42. ISBN 978-5-8125-0921-7

21. Shinkarev A.A., Kornilova A.G., Trofimova F.A., Gordeev A.S., Ginijatullin K.G., Lygina T.Z. Comparison of Sedimentometric Analysis with Laser Grain Size Analysis for the Determination of Particle-Size Distribution of the Soil Clay Fraction, Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2010, V. 152, No. 2, pp. 251-260.

22. Tisdall J.M., Oades J.M. Organic matter and waterstable aggregates in soils, J. Soil Sci., 1982, V. 33, No. 2. pp. 141-163. 10.1111/j.1365-2389.1982.tb01755.x

23. Vasilev A.M. Issledovaniya fizicheskih svojstv pochvy (Investigations of soil physical properties), Kishinev, Gosudarstvennoe izdatelstvo Moldavia, Publ., 1952, 300 p.