V.V. Dokuchaev Soil Science Institute

E-mail: info@esoil.ru
Tel/Fax: +7 (495) 951-50-37
search  search  

The development of theory on humus and soil organic matter: from Turin and Waksman to present days

A. L. Ivanov1, B. M. Kogut1, V. M. Semenov2, M. Turina Oberlander, N. Waksman Schanbacher3

1V.V. Dokuchaev Soil Science Institute, per. Pyzhevskii 7, Moscow, 119017 Russia 
2Institute of Physicochemical and Biological Problems in Soil Science, RAS, Institutskaya st., 2, Pushchino, Moscow region, 142290, Russia 
3Waksman Foundation for Microbiology, 218 Valley Road, Merion Station, PA 19066, USА

The special merits of Z.A. Waksman and I.V. Turin are marked in the development of soil humus and organic matter theory. Little-known pages ex vivo of these outstanding experimentalist scientists, founders of two schools and acknowledged leaders in the investigation of the soil organic matter, are presented in the article. A comparative analysis of theories by I.V. Turin and Z.A. Waksman on the origins, composition and properties of the soil organic matter is given. Actual conceptions, ways and methods of the organic matter fractioning are described in the work. The alternative points of view on the humine matters of soils by I. V. Turin and Z. A. Waksman are considered. A brief review on the heteropolymeric and supramolecular models of soil humic matter composition is presented.

Keywords: soil organic matter, humus, humus matter

DOI: 10.19047/0136-1694-2017-90-3-38

Citation: Ivanov A. L., Kogut B. M., Semenov V. M., Turina Oberlander M. I., Waksman Schanbacher N. The Development of Theory on Humus and Soil Organic Matter: from Turin and Waksman to Present Days, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva,2017, Vol. 90, pp. 3-38. doi: 10.19047/0136-1694-2017-3-38


1.    Alexandrova L.N. Organic matter of the soil and the processes of its transformation. Leningrad, Nauka publ., 1980, 288 p. (in Russian)

2.    Artemyeva Z.S. Organic matter and granulometric system of soil. Moscow: GEOS publ, 2010, 240 p. (in Russian)

3.    Vaksman S.A. Humus. Origin, chemical composition and its significance in nature. Moscow: Ogiz-Sel'khozhiz, 1937, 471 p. (in Russian)

4.    Kogut B.M. Principles and methods for assessing the content of the transformed organic matter in arable soils, Pochvovedenie, 2003, No. 3, pp. 308-316.

5.    Kogut B.M, Semenov V.М. Evolution of dominant paradigms in the study of humus and soil organic matter, Agrokhimiya, 2015, № 12, pp. 3-19. (in Russian)

6.    Kononova M.M. Organic matter of the soil. Its nature, properties and methods of study. Moscow: Publishing House of the USSR Academy of Sciences, 1963. 314 p. (in Russian)

7.    Larionova A.A., Zolotareva B.N., Evdokimov I.V., Bykhovets S.S., Kuzyakov Ya.V., Bugger F. Identification of labile and stable pools of organic matter in agroser soil, Pochvovedenie, 2011, No. 6, pp. 685-698.

8.    Orlov D.S. Humus acids of soils and general theory of humification. Moscow: Publ. Mosk. University, 1990, 325 p. (in Russian)

9.    Orlov D.S., Biryukova O.N., Sukhanova N.I. Organic matter of soils of the Russian Federation. Moscow: Nauka Publ., 1996, 256 p.

10. Perminova I.V. Analysis, classification and prognosis of the properties of humic acids: Author's abstract. dis. ... Doct. chem. n. M., 2000, 50 p. (in Russian)

11. Semenov V.M., Ivannikova L.A., Kuznetsova T.V., Semenova N.A. The Role of Plant Biomass in the Formation of the Active Pool of Soil Organic Matter, Eurasian Soil Science, 2004, No. 11. p. 1196–1205.

12. Semenov V.M., Kogut B.M. Soil organic matter, Moscow: GEOS Publ., 2015, 233 p. (in Russian)

13. Semenov V.M., Kravchenko I.K., Ivannikova L.A., Kuznetsova T.V., Semenova N.A., Gispert M., Pardini J. Experimental determination of active organic matter in soil of natural and agricultural ecosystems, Eurasian Soil Science, 2006, No. 3. P. 282-292. doi: 10.7868/S0032180X13040114

14. Semenov V.M., Tulina A.S., Semenova N.A., Ivannikova L.A. Humification and Nonhumification Pathways of the Organic Matter Stabilization in Soil: A Review, Eurasian Soil Science, 2013, V. 46, No. 4, pp. 355-368. doi: 10.1134/S106422931304011X

15. Titova N.A., Kogut B.M. Transformation of organic matter in agricultural use of soils, Itogi Nauki i Tekhniki (Series of Soil Science and Agrochemistry), V. 8, Moscow, Publishing house VINITI, 1991, 156 p. (in Russian)

16. Travnikova L.S. Organomineral interactions: a role in the processes of soil formation, their fertility and resistance to degradation. Moscow, Soil. Institute of. V.V. Dokuchaeva Publ., 2012, 296 p. (in Russian)

17. Shaimukhametov M.Sh., Titova NA, Travnikova LS, Labenets E.M. Application of physical methods of fractionation for the characteristic of organic matter of soils, Pochvovedenie, 1984, No. 10, pp. 131-141. (in Russian)

18. Tyurin I.V. Organic matter of soils and its role in soil formation and fertility. The doctrine of soil humus. Moscow-Leningrad, Sel'khozhiz Publ., 1937, 287 p. (in Russian).

19. Albers C.N., Banta G.T., Jacobsen O.S., Hansen P.E. Characterization and structural modelling of humic substances in field soil displaying significant differences from previously proposed structures, Eur. J. Soil Sci. 2008. V. 59. P. 693–705.

20. Baigorri R., Fuentes M., Gonzalez-Gaitano G., Garcia-Mina J.M. Analysis of molecular aggregation in humic substances in solution, Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 2007, V. 302, pp. 301–306.

21. Burdon J. Are the traditional concepts of the structures of humic substances realistic? Soil Science, 2001, V. 166(11), pp. 752–769.

22. Cambardella C.A., Elliott E.T. Particulate soil organic matter across a grassland cultivation sequence, Soil Sci. Soc. Am. J. 1992, V. 56, pp. 777–783.

23. Christensen B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover, Eur. J. Soil Sci.2001, V. 52, pp. 345–353.

24. Coelho R.R.R., Sacramento D.R., Linhares L.F. Amino sugars in fungal melanins and soil humic acids, European J. Soil Sci. 1997, V. 48, pp. 425–429.

25. Epstein E.A., Chapman M.R. Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres, Cellular Microbiology. 2008, V. 10, pp. 1413–1420.

26. Fang X., Chua T., Schmidt-Rohr K., Thompson M.L. Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition, Geochimica et Cosmochimica Acta. 2010, V. 74 (2), pp. 584–598.

27. Grandy A.S., Neff J.C. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function, Sci. Total Environ. 2008, V. 404, pp. 297–307.

28. Gregorich E.G., Beare M.H., McKim U.F., Skjemstad J.O. Chemical and Biological Characteristics of Physically Uncomplexed Organic Matter, Soil Sci. Soc. Am. J. 2006, V. 70, pp. 975–985.

29. Haider K., Martin J. P., Filip Z. Humus biochemistry. In: E. A. Paul and A. D. McLaren (ed.), Biochemistry, V. 4. Marcel Dekker Inc., New York, 1975, pp. 218–227.

30. Haile-Mariam S., Collins H. P., Wright S., Paul E. A. Fractionation and Long-Term Laboratory Incubation to Measure Soil Organic Matter Dynamics, Soil Sci. Soc. Am. J. 2008, V. 72, pp. 370–378.

31. Hayes M.H.B. Solvent systems for the isolation of organic components from soils, Soil Sci. Soc. Am. J. 2006, V. 70, pp. 986–994.

32. Hayes M.H.B., Clapp C.E. Humic substances: considerations of compositions, aspects of structure, and environmental influences, Soil Sci. 2001, pp. 166, pp. 723–737.

33. Helfrich M., Flessa H., Mikutta R., Dreves A., Ludwig B Comparison of chemical fractionation methods for isolating stable soil organic carbon pools, Eur. J. Soil Sci. 2007, V. 58, pp. 1316–1329.

34. Kalbitz K., Schmerwitz J., Schwesig D., Matzner E. Biodegradation of soil-derived dissolved organic matter as related to its properties, Geoderma. 2003, V. 113, No. 3–4, pp. 273–291.

35. Kelleher B.P., Simpson A.J. Humic substances in soils: are they really chemically distinct? Environ. Sci. Technol. 2006, V. 40, pp. 4605–4611.

36. Kleber M., Johnson M.G. Advances in understanding the molecular structure of soil organic matter: Implications for interactions in the environment, Adv. Agronomy. 2010, V. 106, pp. 77–142.

37. Kleber M., Sollins P., Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry. 2007, V. 85, pp. 9–24.

38. Kogut B.M., Semenov V.M. Theoretical concepts about organic matter, humus, humic substances in soils and their adequate experimental determination, Biogenic-abiogenic interactions in natural and anthropogenic systems. V Intern. Symp. Saint Petersburg: VVM Publishing Lld., 2014, pp. 105–106.

39. Körschens M., Weigel A., Schulz E. Turnover of soil organic matter (SOM) and long-term balances – tools for evaluating sustainable productivity of soils, Zeitschrift für Pflanzenernährung und Bodenkunde. 1998, V. 161, pp. 409–424.

40. Lehmann J., Kleber M. The contentious nature of soil organic matter, Nature, 2015, V. 528, pp. 60–68.

41. Liang C., Cheng G., Wixon D.L., Balser T.C. An absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization, Biogeochemistry, 2011, V. 106, pp. 303–309.

42. MacCarthy P. The principles of humic substances, Soil Science, 2001, V. 166 (11), pp. 738–751.

43. Magdoff F., Weil R.R. Soil organic matter management strategies, Soil organic matter in sustainable agriculture / Eds. F. Magdoff, R.R. Weil. Boca Raton etc: CRC Press, 2004, pp. 45–65.

44. Manlay R.J., Feller C., Swift M.J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems, Agriculture, Ecosystems and Environment. 2007, V. 119, pp. 217–233.

45. Motavalli P.P., Palm C.A., Parton W.J., Elliott E.T., Frey S.D. Comparison of laboratory and modeling simulation methods for estimating soil carbon pools in tropical forest soils, Soil Biol. Biochem. 1994, V. 26, pp. 935–944.

46. Olk D.C., Gregorich E.G. Overview of the symposium proceedings. Meaningful pools in determining soil carbon and nitrogen dynamics, Soil Sci. Soc. Am. J. 2006, V. 70, pp. 967–974.

47. Pédrot M., Dia A., Davranche M. Dynamic structure of humic substances: Rare earth elements as a fingerprint, J. Colloid Interface Sci. 2010, V. 345, pp. 206–213.

48. Piccolo A. The supramolecular structure of humic substances, Soil Science, 2001, V. 166(11), pp. 810–832.

49. Piccolo A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science, Adv. Agronomy. 2002, V. 75, pp. 57–134.

50. Plante A.F., Fernández, J.M. Haddix M.L., Steinweg J.M., Conant R.T. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils, Soil Biol. Biochem. 2011, V. 43, pp. 1051–1058.

51. Rice J.A. Humin, Soil Science. 2001, V. 166(11), pp. 848–857.

52. Rillig M.C. Arbuscular mycorrhizae, glomalin and soil quality, Canadian J. Soil Sci. 2004, V. 84, pp. 355–363.

53. Rillig M.C., Caldwell B.A., Wosten H.A.B., Sollins P. Role of proteins in soil carbon and nitrogen storage: controls on persistence, Biogeochemistry. 2007, V. 85, pp. 25–44.

54. Rovira P., Jorba M., Romanyà J. Active and passive organic matter fractions in Mediterranean forest soils, Biol. Fertil. Soils. 2010, V. 46, pp. 355–369.

55. Schaeffer A., Nannipieri P., Kästner M., Schmidt B., Botterweck J. From humic substances to soil organic matter – microbial contributions. In honour of Konrad Haider and James P. Martin for their outstanding research contribution to soil science, J. Soils Sediments. 2015, V. 15 (9), pp. 1865–1881.

56. Schwendenmann L., Pendall E. Response of soil organic matter dynamics to conversion from tropical forest to grassland as determined by long-term incubation, Biol. Fertil. Soils, 2008, V. 44, pp. 1053–1062.

57. Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kögel-Knabner I., Lehmann J., Manning D.A.C, Nannipieri P., Rasse D.P., Weiner S., Trumbore S.E. Persistence of soil organic matter as an ecosystem property, Nature, 2011, V. 478, pp. 49–56.

58. Simpson A. Multidimensional solution state NMR of humic substances: a practical guide and review, Soil Science, 2001, V. 166 (11), pp. 795–809.

59. Simpson A.J. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy, Magnetic Resonance in Chemistry, 2002, V. 40, pp. S72–S82.

60. Simpson A.J., Kingery W.L., Hayes M.H.B. et al. Molecular structures and associations of humic substances in the terrestrial environment, Naturwissenschaften, 2002, V. 89, pp. 84–88.

61. Simpson A.J., Simpson M.J., Smith E., Kelleher B.P. Microbially derived inputs to soil organic matter: Are current estimates too low? Environ. Sci. Technol, 2007, V. 41, pp. 8070–8076.

62. Six J., Conant R.T., Paul E.A., Paustian K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils, Plant and Soil. 2002, V. 241, pp. 155–176.

63. Sollins P., Swanston C., Kleber M., Filley T., Kramer M., Crow S., Caldwell B.A., Lajtha K., Bowden R. Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation, Soil Biol. Biochem. 2006, V. 38, pp. 3313–3324.

64. Springer U. “Der Platz der Huminsäure in der Chemie des Humus”. Eine Erwiderung, J. Plant Nutrition Soil Sci. (Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde), 1935, Bd 37, H. 3–4. S. 202–204.

65. Springer U. Ist der Begriff “Huminsäure” heute noch berechtigt? J. Plant Nutrition and Soil Sci. (Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde), 1934, Bd 35, H. 5–6. S. 334–343.

66. Stevenson F.J. Humus Chemistry. Genesis, Composition, Reactions. John Wiley and Sons, N.Y., 1982. 443 p.

67. Stevenson F.J. Humus Chemistry. Genesis, Composition, Reactions. N.Y: John Wiley and Sons, 1994. 496 p.

68. Stockmann U., Adams M.A., Crawford, J.W. Field D.J., Henakaarchchi N., Jenkins M., Minasny B., McBratney A.B., de Courcelles V.R., Singh K., Wheeler I., Abbott L., Angers D.A., Baldock J., Bird M., Brookes P.C., Chenu C., Jastrow J.D., Lal R., Lehmann J., O’Donnell A.G., Parton W.J., Whitehead D., Zimmermann M. The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agriculture, Ecosystems and Environment. 2013, V. 164, pp. 80–99.

69. Strosser E. Methods for determination of labile soil organic matter: An overview, J. Agrobiology, 2010, V. 27(2), pp. 49–60.

70. Sutton R., Sposito G. Molecular structure in soil humic substances: the new view, Environ. Sci. Technol., 2005, V. 39, pp. 9009–9015.

71. Swift R.S. Sequestration of carbon by soil, Soil Science. 2001, V. 166, pp. 858–871.

72. Tate R.L.III. Soil organic matter: Biological and ecological effects, N.Y.: John Wiley and Sons, 1987, 291 p.

73. van Hees P.A.W., Jones D.L., Finlay R., Godbold D.L., Lundström U.S. The carbon we do not see – the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review, Soil Biol. Biochem. 2005, V. 37, pp. 1–13.

74. von Lützow M., Kögel-Knabner I., Ekschmitt K., Flessa H., Guggenberger G., Matzner E., Marschner B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem, 2007, V. 39, pp. 2183–2207.

75. von Lützow M., Kögel-Knabner I., Ludwig B., Matzner E., Flessa H., Ekschmitt K., Guggenberger G., Marschner B., Kalbitz K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model, J. Plant Nutrition and Soil Sci. 2008, V. 171, pp. 111–124.

76. von Wandruszka R. The micellar model of humic acid: evidence from pyrene fluorescence measurements, Soil Sci. 1998, V. 163, pp. 921–930.

77. Waksman S.A. Humus: origin, chemical composition, and importance in nature. Baltimore, The Williams & Wilkins Company, 1936. 494 p.

78. Waksman S.A. Humus: origin, chemical composition, and importance in nature. Baltimore: The Williams & Wilkins company, 1938. 526 p.

79. Wander M. Soil Organic Matter Fractions and Their Relevance to Soil Function, Soil organic matter in sustainable agriculture. Eds. F. Magdoff, R.R. Weil. Boca Raton etc: CRC Press, 2004, pp. 67–102.

80. Wershaw R.L. Molecular aggregation of humic substances, Soil Sci. 1999, V. 164, pp. 803–813.

81. Wershaw R.L. Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humifi cation, Scientific Investigations Report 2004-5121, U.S. Geological Survey, Reston, Virginia, 2004. 44 p.

82. West T.O., Six J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity, Climatic Change, 2007, V. 80, pp. 25–41.

83. Wilde S.A. Forest humus: its classification on a genetic basis, Soil Science, 1971, V. 111, pp. 1–12.