V.V. Dokuchaev Soil Science Institute

E-mail: info@esoil.ru
Tel/Fax: +7 (495) 951-50-37
search  search  

Change in aggregate structure of various soil types during the succession of abandoned lands

Yu. I. Baeva1, I. N. Kurganova2, V. O. Lopes de Gerenyu2, L. A. Ovsepyan2V. M. Telesnina3Yu. D. Tsvetkova1

1Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 117198, Russia
2Institute of Physicochemical and Biological Problems in Soil Science, RAS, Institutskaya st., 2, Pushchino, Moscow region, 142290, Russia
3Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991 Russia

A comparative analysis of the changes in the aggregate structure in various types of soils (Sod-podzolic, Gray forest, and Chernozems) during their postagrogenic evolution was carried out. The study plots included: sod-podzolic soils –plowland, laylands abandoned 8, 13, 35 years ago and a secondary forest (~100 years); gray forest soils –plowland, laylands abandoned 6,15 and 30 years ago and a secondary forest of 60 years; сhernozems–plowland and layland abandoned 10, 15, 26 and 81 years ago. The geobotanical studies have shown that the withdrawal of soils from agricultural use causes changes in species composition, increase of biodiversity, and a gradual recovery of climax communities, which are attributed for specific natural climatic zones. Along with vegetation succession, we observed the increase in the total carbon content in the upper part of the former arable layer (0–10 cm) in all studied soils. However, the trend becomes weaker from northern to southern climatic zones in the following sequence: Sod-podzolic soil > Gray forest soil >Chernozems ordinary. It was found that the content of macroaggregates increases authentically in the surface layers of all of the investigated soils from cropland to abandoned and forest soils during the self-restoration of Gray forest soils and Chernozems while the number of micro-aggregates, on the contrary, decreases. In all studied chronosequences, we observed the increase of the weighed mean diameter of the aggregates and the structure coefficients. The most pronounced changes in the aggregate structure were observed in the chronosequence, formed on Gray forest soils, while the weakest alterations were typical for the Sod-podzolic soils of the southern taiga.

Keywords: post-agrogenic soils, succession of vegetation, biodiversity, aggregate composition, structure coefficient.

DOI: 10.19047/0136-1694-2017-88-47-74

CitationBaeva Yu.I., Kurganova I.N., Lopes de Gerenyu V.O., Ovsepyan L.A., Telesnina V.M. Change in aggregate structure of various soil types during the succession of abandoned lands, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2017, Vol. 88, pp. 47-74. doi: 10.19047/0136-1694-2017-88-47-74

Баева Ю.И., Курганова И.Н., Лопес де Греню В.О., Овсепян Л.А., Телеснина В.М., Цветкова Ю.Д. Изменение агрегатного состава различных типов почв в ходе залежной // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. Вып. 88. С. 47-74. doi: 10.19047/0136-1694-2017-88-47-74


1.   Avdeeva T.N., Yashin M.A., Kogut B.M., Markina L.G., Tarasov S.I. Organic carbon content of structural units of sod-podzolic soil under different cropping systems, Plodorodie, 2014, No. 2, pp. 32–36. (in Russian)

2.   Antsiferova O.A. Transformation of vegetation and soil properties younger deposits of the Tambov plain and Zamlandskogo Peninsula, Extended abstract of candidate’s thesis, Kaliningrad, 2001, 24 p. (in Russian)

3.   Artem'eva Z.S. The organic matter of the soil and grading system, Moscow, GEOS Publ., 2010, 240 p. (in Russian)

4.   Baeva Yu.I. On the issue of development postagrogenic gray forest soils, Biologiya – nauka XXI veka: 20-ya Mezhdunarodnaya Pushchinskaya shkola-konferentsiya molodykh uchenykh (The 20th International Pushchino School-Conference of Young Scientists “Biology – the science of the XXI century”), Abstracts of Papers, Pushchino, 2016, pp. 196–197. (in Russian)

5.   Baeva Yu.I., Kurganova I.N., Lopes de Gereniu V.O., Pochikalov A.V., Kudeiarov V.N. Changes in Physical Properties and Carbon Stocks of Gray Forest Soils in the Southern Part of Moscow Region during Postagrogenic Evolution, Eurasian Soil Science, 2017. V. 50 (3), pp. 345–353 doi: 10.1134/S1064229317030024

6.   Bembeeva O.G., Dzhapova R.R. Restorative succession fallow lands in the desert zone of Kalmykia, Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2012, V. 14, No. 1(5), pp. 1195–1198. (in Russian)

7.   Bulygin S.Yu., Lisetskii F.N. Aggregate Composition of Soils, Its Assessment and Monitoring, Eurasian Soil Science, 1996, V. 29, No. 6, p. 707

8.   Vadyunina A.F., Korchagina Z.A. Methods of study of the physical properties of soil, Moscow, Agropromizdat Publ., 1986, 416 p. (in Russian)

9.   Vasenev I.I. Soil succession. Moscow, LKI Publ., 2008, 400 p. (in Russian)

10. Vasenev I.I., Vaseneva E.G., Panina N.A. Morphogenetic characteristics of soils, Agroekologicheskoe sostoyanie chernozemov in Central Chernozem Region, Kursk, 1996, pp. 40–80. (in Russian)

11. Gaevaya E.A. Effect of various methods of cultivation at its physical properties, Nauchnyi zhurnal KubGAU, 2008, No. 39(5), pp. 1–10. (in Russian)

12. Glumov G.A. The study of modern dynamics of natural vegetation of southern forest steppe Trans-Urals, Extended abstract of Doctor’s thesis, Leningrad, 1953, 24 p. (in Russian)

13. Dadenko E.V., Myasnikova M.A., Kazeev K.Sh., Kolesnikov S.I., Val'kov V.F. The biological activity of ordinary chernozem with prolonged use under cultivation, Pochvovedenie, 2014, No. 6, pp.724–734. (in Russian)

14. Egorov V.V., Fridland V.M., Ivanova E.N., Rozov N.N. et al. Classification and diagnosis of the USSR soils, Moscow: Kolos Publ., 1977, 221 р. (in Russian)

15. Zamotaev I.V., Belobrov V.P., Kurbatova A.N., Belobrova D.V. Anthropogenic and post-anthropogenic transformation of soils of L’gov region of Kursk oblast, Bjulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2016, V. 85, pp. 97–113. (in Russian)


16. Ipatov V.S., Mirin D.M. Description phytocenosis, St. Petersburg, 2008, 71 p. (in Russian)

17. Karavaeva N.A., Denisenko E.A. Postagrogenic Migrational–Mycelial Chernozems of Abandoned Fields of Different Ages in the Southern Forest-Steppe of European Russia, Eurasian Soil Science, 2009, V. 42 (10), pp. 1083– 1094. doi: 10.1134/S1064229309100020

18. Karavaeva N.A., Zharikov S.N., Konchin A.E. Arable soil of Nechernozemie: process-evolutionary approach to the study, Pochvovedenie, 1985, No.11, pp. 114–125. (in Russian)

19. Lisetskii F.N., Marinina O.A., Rodionova M.E. Changes in the structural state of the soil at the differences in soil and climatic conditions and land use history, Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2013, V. 15 (3), pp. 998–1002. (in Russian)

20. Lyuri D.I. Goryachkin S.V., Karavaeva N.A. еt al. Dynamics of Russian agricultural land in the XX century and postagrogenic restoration of vegetation and soil, Moscow, GEOS Publ., 2010, 416 p. (in Russian)

21. Lykov A.M., Es'kov A.I., Novikov M.N. The organic matter of arable soils Nechernozemie, Moscow, Rossel'khozakademiya GNU VNIPTIOU Publ., 2004, 630 p. (in Russian)

22. Makarova A.P., Kozlova A.A. Soil and microbiological properties of virgin and fallow gray forest soils in the Angara region, complicated of the paleocryogenesis, Permskii agrarnyi vestnik, 2014, No. 4(8), pp. 44–50. (in Russian)

23. Martynova N.A. Soil Chemistry: Soil organic matter, Irkutsk, IGU Publ., 2011, 255 p. (in Russian)

24. Morkovkin G.G., Demina I.V. To assess the impact of green manure and deposits on a change of fertility of chernozems leached under moderately arid and forested steppe of the Altai Territory, Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2011, No. 11(85), pp. 18–22. (in Russian)

25. Myasnikova M.A. The effect of age on the biological properties of the deposits postagrogenic chernozems of the Rostov region, Extended abstract of candidate’s thesis, Rostov-na-Donu, 2015, 153 p. (in Russian)

26. Nesmeyanova M.A. Structural-aggregate composition and water stability of the soil under the influence of perennial legumes, Permskii agrarnyi vestnik, 2015, No. 1(9), pp. 50–55. (in Russian)

27. Rozanov B.G. Soil Morphology, Moscow, Akademicheskii Proekt Publ., 2004, 432 p. (in Russian)

28. Rybakova A.N. Transformation of the gray soil properties at various using them, Extended abstract of candidate’s thesis, Tyumen', 2016, 18 p. (in Russian)

29. Rybakova A.N., Sorokina O.A. Transformation of some physical properties postagrogenic gray soil under different use of deposits, Vestnik KrasGAU, 2013, ussue 6, pp. 73–79. (in Russian)

30. Skvortsova E.B., Baranova O.Yu., Numerov G.B. Change of soil microstructure with overgrown forest of arable land, Pochvovedenie, 1987, No. 9, pp. 101–109. (in Russian)

31. Telesnina V.M., Vaganov I.E., Karlsen A.A., Ivanova A.E., Zhukov M.A., Lebedev S.M. Specific Features of the Morphology and Chemical Properties of Coarse-Textured Postagrogenic Soils of the Southern Taiga, Kostroma Oblast, Eurasian Soil Science, 2016, V. 49 (1), p. 102–115. doi: 10.1134/S1064229316010117

32. Teit R.L. Soil organic matter: biological and ecological aspects, Moscow, Nauka Publ., 1991, 400p. (in Russian)

33. Trofimov I.T., Bekhovykh Yu.V., Bolotov A.G., Sizov E.G. Influence of deciduous forests on the physical properties of soil, Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, No. 1 (111), 2014, pp. 34–39. (in Russian)

34. Shein E.V. Soil Physics Course, Moscow, MGU Publ., 2005, 432 p. (in Russian)

35. Colazo J.C., Buschiazzo D.E. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina, Geoderma, 2010, V. 159, pp. 228–236.

36. Elliott E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils, Soil Sci. Soc. Am. J., 1986, V. 50, pp. 627–633.

37. Falkengren-Grerup U., Brink D.HJ., Brunet J. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. Forest Ecol. Manag., 2005, V. 225, pp. 74–81.

38. Golchin A., Oades J.M., Skjemstad J.O., Clarke P. Study of free and occluded particulate organic matter in soils by solid state 13C CP/ MAS NMP spectroscopy and scanning electron microscopy, Austral. J. Soil Res., 1994, V. 32, pp. 285–309.

39. Gunina A., Kuzyakov Y. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance, Soil Biol. Biochem., 2014, pp. 1–10.

40. Kalinina, O., Goryachkin, S.V., Lyuri, D.I., Giani L. Post-agrogenic development of vegetation, soils and carbon stocks under self-restoration in different climatic zones of European Russia, Catena, 2015, V. 129, pp. 18–29. doi: 10.1016/j.catena.2015.02.016

41. Karlen D.L., Andrews S.S., Weinhold B.J., Doran J.W. Soil quality: humankind’s foundation for survival, J. Soil Water Conserv., 2003, V. 58 (4), pp. 171–179.

42. Kristiansen S. M., Schjоnning P., Thomsen I.K., Olesen J.E., Kristensen K., Christensen B.T. Similarity of differently sized macro-aggregates in arable soils of different texture, Geoderma, 2006, V. 137, pp. 147–154.

43. Kurganova, I., Yermolaev, A., Lopes de Gerenyu, V., Larionova, A., Kuzyakov, Y., Keller, T., and Lange, S. Carbon balance in soils of abandoned lands in Moscow regionEurasian Soil Science, 2007, V. 40(1), pp. 50–58.

44. Lado M., Paz A., Ben-Hur M. Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss, Soil Sci. Soc. Am. J., 2004, V. 68, pp. 935–942.

45. Lopes de Gerenyu V., Kurganova I., Kuzyakov Ya. Soil organic carbon pools in former arable Сhernozems, Ecolojia, 2008, V. 4, pp. 38–44.

46. Nichols K.A., Toro M. A whole soil stability index (WSSI) for evaluating soil aggregation, Soil Till. Res., 2011, V. 111, pp. 99–104.

47. Niewczas J., Witkowska-Walczak B. The soil aggregates stability index (ASI) and its extreme values, Soil Till. Res., 2005, V. 80, pp. 69–78.

48. Pirmoradian N., Sepaskhah A.R., Hajabbasi M.A. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments, Biosyst. Eng., 2005, V. 90 (2), pp. 227–234.

49. Six J., Bossuyt H., Degryze S., Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil Till. Res. 2004, V. 79, pp. 7–31.

50. Tisdall J.M., Oades J.M. Organic matter and water-stable aggregates in soils, J. Soil Sci., 1982, V. 33, pp. 141–163.

51. Yamashita T., Flessa H., Bettina J., Helfrich M., Ludwig B. Organic matter in density fractions of water-stable aggregates in silty soils: Effect of land use, Soil Biol. Biochem., 2006, V. 38, pp. 3222–3234.